A quantum machine learning algorithm based on generative models
نویسندگان
چکیده
منابع مشابه
An efficient quantum algorithm for generative machine learning
A central task in the field of quantum computing is to find applications where quantum computer could provide exponential speedup over any classical computer [1–3]. Machine learning represents an important field with broad applications where quantum computer may offer significant speedup [4–8]. Several quantum algorithms for discriminative machine learning [9] have been found based on efficient...
متن کاملA hybrid model based on machine learning and genetic algorithm for detecting fraud in financial statements
Financial statement fraud has increasingly become a serious problem for business, government, and investors. In fact, this threatens the reliability of capital markets, corporate heads, and even the audit profession. Auditors in particular face their apparent inability to detect large-scale fraud, and there are various ways to identify this problem. In order to identify this problem, the majori...
متن کاملLearning Deep Generative Models
Building intelligent systems that are capable of extracting high-level representations from high-dimensional sensory data lies at the core of solving many artificial intelligence–related tasks, including object recognition, speech perception, and language understanding. Theoretical and biological arguments strongly suggest that building such systems requires models with deep architectures that ...
متن کاملA New Denoising Algorithm Based on Extreme Learning Machine
A new image denoising algorithm is proposed. GA-ELM algorithm uses genetic algorithm (GA) to decide weights in the Extreme learning Machine algorithm. It has better global optimal characteristics than traditional optimal algorithm. In this paper, we used GA-ELM to do image denoising researching work. Firstly, this paper uses training samples to train GA-ELM as the noise detector. Then, we utili...
متن کاملLearning Generative Models with the Up-Propagation Algorithm
Up propagation is an algorithm for inverting and learning neural network generative models Sensory input is processed by inverting a model that generates patterns from hidden variables using top down connections The inversion process is iterative utilizing a negative feedback loop that depends on an error signal propagated by bottom up connections The error signal is also used to learn the gene...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Science Advances
سال: 2018
ISSN: 2375-2548
DOI: 10.1126/sciadv.aat9004